– Modus ponens og modus tollens

Modus ponens og modus tollens, (Latin: «metode for å påstå» og «metoden for å nekte») i proposisjonale logikk, to typer slutning som kan trekkes fra en hypotetisk forslag—altså, fra en påstand på formen «Hvis A, så B» (symbolsk En ⊃ B, der ⊃ betyr «Hvis . . . deretter”). Modus ponens refererer til slutninger i form av En ⊃ B; A, derfor B. Modus tollens refererer til slutninger i form av En ⊃ B; ∼B, derfor ∼A (∼ betyr «ikke»)., Et eksempel på modus tollens er følgende:

Hvis en vinkel er innskrevet i en halvsirkel, og det er en rett vinkel; denne vinkelen er ikke en rett vinkel; derfor er denne vinkelen er ikke innskrevet i en halvsirkel.

For disjunktiv lokaler (a ∨, som betyr «heller . . . eller»), vilkårene modus tollendo ponens og modus ponendo tollens er brukt for argumenter av de former En ∨ B; ∼A, derfor B, og A ∨ B; A, derfor ∼B (bare gyldig for eksklusive motsetninger: «Enten A eller B, men ikke begge deler»). Regelen i modus ponens er innlemmet i nesten alle formelle systemet av logikk.

Legg igjen en kommentar

Din e-postadresse vil ikke bli publisert. Obligatoriske felt er merket med *